Sister-chromatid misbehavior in Drosophila ord mutants.

نویسندگان

  • W Y Miyazaki
  • T L Orr-Weaver
چکیده

In Drosophila males and females mutant for the ord gene, sister chromatids prematurely disjoin in meiosis. We have isolated five new alleles of ord and analyzed them both as homozygotes and in trans to deficiencies for the locus, and we show that ord function is necessary early in meiosis of both sexes. Strong ord alleles result in chromosome nondisjunction in meiosis I that appears to be the consequence of precocious separation of the sister chromatids followed by their random segregation. Cytological analysis in males confirmed that precocious disjunction of the sister chromatids occurs in prometaphase I. This is in contrast to Drosophila mei-S332 mutants, in which precocious sister-chromatid separation also occurs, but not until late in anaphase I. All three of the new female fertile ord alleles reduce recombination, suggesting they affect homolog association as well as sister-chromatid cohesion. In addition to the effect of ord mutations on meiosis, we find that in ord2 mutants chromosome segregation is aberrant in the mitotic divisions that produce the spermatocytes. The strongest ord alleles, ord2 and ord5, appear to cause defects in germline divisions in the female. These alleles are female sterile and produce egg chambers with altered nurse cell number, size, and nuclear morphology. In contrast to the effects of ord mutations on germline mitosis, all of the alleles are fully viable even when in trans to a deficiency, and thus exhibit no essential role in somatic mitosis. The ord gene product may prevent premature sister-chromatid separation by promoting cohesion of the sister chromatids in a structural or regulatory manner.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The cohesion protein ORD is required for homologue bias during meiotic recombination

During meiosis, sister chromatid cohesion is required for normal levels of homologous recombination, although how cohesion regulates exchange is not understood. Null mutations in orientation disruptor (ord) ablate arm and centromeric cohesion during Drosophila meiosis and severely reduce homologous crossovers in mutant oocytes. We show that ORD protein localizes along oocyte chromosomes during ...

متن کامل

Genetic interactions between mei-S332 and ord in the control of sister-chromatid cohesion.

The Drosophila mei-S332 and ord gene products are essential for proper sister-chromatid cohesion during meiosis in both males and females. We have constructed flies that contain null mutations for both genes. Double-mutant flies are viable and fertile. Therefore, the lack of an essential role for either gene in mitotic cohesion cannot be explained by compensatory activity of the two proteins du...

متن کامل

The Sister-Chromatid Cohesion Protein ORD Is Required for Chiasma Maintenance in Drosophila Oocytes

Accurate chromosome partitioning during cell division requires that cohesion hold sister chromatids together until kinetochores correctly attach to spindle microtubules. In 1932, Darlington noted that sister-chromatid cohesion distal to the site of exchange also could play a vital role in maintaining the association of chiasmate homologs during meiosis. Cohesion linking a recombinant chromatid ...

متن کامل

SOLO: a meiotic protein required for centromere cohesion, coorientation, and SMC1 localization in Drosophila melanogaster

Sister chromatid cohesion is essential to maintain stable connections between homologues and sister chromatids during meiosis and to establish correct centromere orientation patterns on the meiosis I and II spindles. However, the meiotic cohesion apparatus in Drosophila melanogaster remains largely uncharacterized. We describe a novel protein, sisters on the loose (SOLO), which is essential for...

متن کامل

Meiosis in male Drosophila

Meiosis entails sorting and separating both homologous and sister chromatids. The mechanisms for connecting sister chromatids and homologs during meiosis are highly conserved and include specialized forms of the cohesin complex and a tightly regulated homolog synapsis/recombination pathway designed to yield regular crossovers between homologous chromatids. Drosophila male meiosis is of special ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 132 4  شماره 

صفحات  -

تاریخ انتشار 1992